
Seminar Preparation - Packaging and Testing

Activity 1

Run the following code using pylint and identify the errors.

def factorial (x):

 if x == 1:

 return 1

 else:

 return (x * factorial(x-1))

num = 3

print("The factorial of", num, "is", factorial(num))

The result is as follows:

************* Module recursion_pylint

recursion_pylint.py:6:0: C0325: Unnecessary parens after 'return' keyword (superfluous-parens)

recursion_pylint.py:1:0: C0114: Missing module docstring (missing-module-docstring)

recursion_pylint.py:1:0: C0116: Missing function or method docstring (missing-function-docstring)

recursion_pylint.py:1:15: C0103: Argument name "x" doesn't conform to snake_case naming style

(invalid-name)

recursion_pylint.py:2:4: R1705: Unnecessary "else" after "return", remove the "else" and de-indent the

code inside it (no-else-return)

recursion_pylint.py:8:0: C0103: Constant name "num" doesn't conform to UPPER_CASE naming style

(invalid-name)

--

Your code has been rated at 0.00/10 (previous run: 0.00/10, +0.00)

Source: Progamiz. (n.d.) Python Recursion.

Activity 2

In ‘Packaging & Testing’ (unit 9), we examined the use of documentation to support code
developments. Add appropriate commenting and documentation for the code below.

def add(x, y):

 “””Addition of 2 int

 Parameters

 x: int

 any numbers

 y: int

 any numbers

 Returns

 int

 result of addition

 “””

 return x + y

def subtract(x, y):

 “””Subtraction of 2 int

 Parameters

 x: int

 any numbers

https://www.programiz.com/python-programming/recursion

 y: int

 any numbers

 Returns

 int

 result of subtraction

 “””

 return x - y

def multiply(x, y):

 “””Multiplication of 2 int

 Parameters

 x: int

 any numbers

 y: int

 any numbers

 Returns

 int

 result of multiplication

 “””

 return x * y

def divide(x, y):

 “””Division of 2 int

 Parameters

 x: int

 any numbers

 y: int

 any numbers

 Returns

 int

 result of division

 “””

 return x / y

#Printing selection of operation for user

print("Select operation.")

print("1.Add")

print("2.Subtract")

print("3.Multiply")

print("4.Divide")

while True:

 “””The while loop is executed until the break statement occurs.

 While the while loop is executing, the user can select one of the

 arithmetic operation by typing in the corresponding number”””

 choice = input("Enter choice(1/2/3/4): ")

 if choice in ('1', '2', '3', '4'):

 #convert string input to float

 num1 = float(input("Enter first number: "))

 num2 = float(input("Enter second number: "))

 if choice == '1':

 print(num1, "+", num2, "=", add(num1, num2))

 elif choice == '2':

 print(num1, "-", num2, "=", subtract(num1, num2))

 elif choice == '3':

 print(num1, "*", num2, "=", multiply(num1, num2))

 elif choice == '4':

 print(num1, "/", num2, "=", divide(num1, num2))

 #break the while loop if answer is no

 next_calculation = input("Let's do next calculation? (yes/no): ")

 if next_calculation == "no":

 break

 else: print("Invalid Input")

Source: Progamiz. (n.d.) Python Program to Make a Simple Calculator.

Activity 3

Read the article by Rani et al. (2021). What impact does this article have on the way in

which you have commented the code in the task above?

The article by Rani et al. (2021) shows how developers use comments and

documentation for code. In summary, developers do not often comment clearly on their

code because writing comments besides writing code is an extra effort. One solution is to

have a template for commenting and documentation to increase efficiency and reduce

the time and effort required to write these comments. Compared to the Google, Oracle

and PEP257 commenting guidelines, the NumPy style has stricter conventions but is

more readable than the others. In addition, linters (like pylint) and other automatic

checkers of the code can help maintain high-quality documentation. In Activity 2, I used

the NumPy comment guidelines to document the code. In my opinion, it is easier to

understand and more transparent than the other guidelines (Rani et al., 2021).

https://www.programiz.com/python-programming/examples/calculator

Activity 4

Integrate unit tests into the code in Activity 2 to test operation of the methods.

import unittest

from using_unittest import add, subtract, multiply, divide

class TestUsing_unitest(unittest.TestCase):

 def test_add(self):

 result = add(2,2)

 self.assertEqual(result, 4)

 def test_subtract(self):

 result = subtract(2,2)

 self.assertEqual(result, 0)

 def test_multiply(self):

 result = multiply(2,2)

 self.assertEqual(result, 4)

 def test_divide(self):

 result = divide(2,2)

 self.assertEqual(result, 1)

if __name__ == '__main__':

 unittest.main()

References:

Rani, P., Abukar, S., Stulova, N., Bergel, A. & O. Nierstrasz (2021) Do Comments follow

Commenting Conventions? A Case Study in Java and Python. 2021 IEEE 21st

International Working Conference on Source Code Analysis and Manipulation (SCAM).

165-169. DOI: 10.1109/SCAM52516.2021.00028.

	Activity 1
	Activity 2
	Activity 3
	The article by Rani et al. (2021) shows how developers use comments and documentation for code. In summary, developers do not often comment clearly on their code because writing comments besides writing code is an extra effort. One solution is to have...
	Activity 4

